Scientists Have Modelled Supercapacitor Operation at Molecular and Ionic Level

HSE scientists used supercomputer simulations to study the behaviour of ions and water molecules inside the nanopores of a supercapacitor. The results showed that even a very small amount of water alters the charge distribution inside the nanopores and influences the device’s energy storage capacity. This approach makes it possible to predict how supercapacitors behave under different electrolyte compositions and humidity conditions. The paper has been published in Electrochimica Acta. The study was supported by a grant from the Russian Science Foundation (RSF).
Supercapacitors are compact devices capable of rapidly storing and releasing electrical energy. They are used in electronics, hybrid vehicles, energy recovery systems, and solar and wind power plants. Unlike batteries, which require tens of minutes to several hours to charge and typically endure about 500–1,000 cycles, supercapacitors can charge within seconds and withstand hundreds of thousands of cycles without noticeable loss of capacity—the amount of energy the device can store and release. The limitation of supercapacitors is that, despite their speed, they store less energy than batteries of the same size. Therefore, researchers continue to study supercapacitors to find ways of increasing their energy storage capacity.
Previously, a team of researchers from HSE University investigated the behaviour of ions and electrolyte molecules in carbon nanopores and developed a model of the electric double layer. In a new study, scientists from HSE University and the Institute of Solution Chemistry of the Russian Academy of Sciences modelled, for the first time, the behaviour of electrolytes at the level of individual ions and molecules using HSE University's supercomputer. They studied a mixture of an ionic liquid, an organic solvent, and trace amounts of water confined within carbon micropores 0.7–1.9 nanometres wide. Using the molecular and ionic trajectories obtained, the researchers calculated differential capacitance profiles and compared the results with experimental data.
Yury Budkov
'The modelling allowed us to observe how ions and solvent molecules are distributed within the pores, how they form layered structures, and how these layers change with variations in the electrode’s charge,' explains Yury Budkov, Professor at MIEM HSE. 'For the first time, we obtained the differential capacitance of a supercapacitor directly from full-atom molecular dynamics simulations, rather than from simplified theoretical models. This approach allows for more accurate predictions of supercapacitor performance without the need for complex and costly experiments.'

The simulation results showed that even trace amounts of water significantly alter the behaviour of the electrolyte in nanopores. Under a weak negative electrode charge, water disrupted the ordering of ions, thereby reducing the differential capacitance. Conversely, under a strong positive electrode charge, water increased the capacitance: its molecules aligned with the electric field and partially offset the effect of the electrode charge on the ions, thereby altering their distribution within the nanopores.
The scientists also found that changes in capacitance with pore thickness are directly associated with fluctuations in disjoining pressure, the excess pressure within a thin liquid film inside the nanopores. For the first time, it was demonstrated that these fluctuations correspond to changes in the device’s capacitance and reflect how the inner layers of the electrolyte shift and compact when the electrode is charged. This analysis helps explain why, in real supercapacitors, variations in humidity or electrolyte composition can lead to increases or decreases in device performance.
Daria Gurina
'Even small amounts of water impurities can rearrange the internal structure of the electrolyte within the pore and influence charge storage. Understanding these subtle effects is crucial for the development of new electrolytes and electrode materials,' explains Daria Gurina, Research Fellow at MIEM HSE.
The researchers believe that such models will enable more accurate predictions of supercapacitor performance and contribute to the development of more efficient and durable devices for transportation, electronics, and energy storage systems.
See also:
Larger Groups of Students Use AI More Effectively in Learning
Researchers at the Institute of Education and the Faculty of Economic Sciences at HSE University have studied what factors determine the success of student group projects when they are completed with the help of artificial intelligence (AI). Their findings suggest that, in addition to the knowledge level of the team members, the size of the group also plays a significant role—the larger it is, the more efficient the process becomes. The study was published in Innovations in Education and Teaching International.
New Models for Studying Diseases: From Petri Dishes to Organs-on-a-Chip
Biologists from HSE University, in collaboration with researchers from the Kulakov National Medical Research Centre for Obstetrics, Gynecology, and Perinatology, have used advanced microfluidic technologies to study preeclampsia—one of the most dangerous pregnancy complications, posing serious risks to the life and health of both mother and child. In a paper published in BioChip Journal, the researchers review modern cellular models—including advanced placenta-on-a-chip technologies—that offer deeper insights into the mechanisms of the disorder and support the development of effective treatments.
Using Two Cryptocurrencies Enhances Volatility Forecasting
Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.
Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions
An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.
Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence
Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.
Solvent Instead of Toxic Reagents: Chemists Develop Environmentally Friendly Method for Synthesising Aniline Derivatives
An international team of researchers, including chemists from HSE University and the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), has developed a new method for synthesising aniline derivatives—compounds widely used in the production of medicines, dyes, and electronic materials. Instead of relying on toxic and expensive reagents, they proposed using tetrahydrofuran, which can be derived from renewable raw materials. The reaction was carried out in the presence of readily available cobalt salts and syngas. This approach reduces hazardous waste and simplifies the production process, making it more environmentally friendly. The study has been published in ChemSusChem.
How Colour Affects Pricing: Why Art Collectors Pay More for Blue
Economists from HSE University, St Petersburg State University, and the University of Florida have found which colours in abstract paintings increase their market value. An analysis of thousands of canvases sold at auctions revealed that buyers place a higher value on blue and favour bright, saturated palettes, while showing less appreciation for traditional colour schemes. The article has been published in Information Systems Frontiers.
New Method for Describing Graphene Simplifies Analysis of Nanomaterials
An international team, including scientists from HSE University, has proposed a new mathematical method to analyse the structure of graphene. The scientists demonstrated that the characteristics of a graphene lattice can be represented using a three-step random walk model of a particle. This approach allows the lattice to be described more quickly and without cumbersome calculations. The study has been published in Journal of Physics A: Mathematical and Theoretical.
Designing an Accurate Reading Skills Test: Why Parallel Texts are Important in Dyslexia Diagnosis
Researchers from the HSE Centre for Language and Brain have developed a tool for accurately assessing reading skills in adults with reading impairments. It can be used, for instance, before and after sessions with a language therapist. The tool includes two texts that differ in content but are equal in complexity: participants were observed to read them at the same speed, make a similar number of errors, and understand the content to the same degree. Such parallel texts will enable more accurate diagnosis of dyslexia and better monitoring of the effectiveness of interventions aimed at addressing it. The paper has been published in Educational Studies.
HSE University Launches Development of Domestic 6G Communication Technologies Based on Sub-Terahertz Microelectronics
HSE University has launched a large-scale research and engineering initiative to develop domestic technologies for next-generation 6G communication systems. The project is being carried out by the team of the Strategic Technological Project 'Trusted 6G Communication Systems Technology Suite' implemented under the Priority 2030 programme.


