• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Analysing Genetic Information Can Help Prevent Complications after Myocardial Infarction

Analysing Genetic Information Can Help Prevent Complications after Myocardial Infarction

© iStock

Researchers at HSE University have developed a machine learning (ML) model capable of predicting the risk of complications—major adverse cardiac events—in patients following a myocardial infarction. For the first time, the model incorporates genetic data, enabling a more accurate assessment of the risk of long-term complications. The study has been published in Frontiers in Medicine.

Coronary artery disease (CAD), or ischaemic heart disease (IHD), is a condition characterised by insufficient blood and oxygen supply to the heart from narrowing or blockage of the coronary arteries. It is typically caused by plaques composed of fats and cholesterol that build up on the walls of blood vessels. Coronary heart disease may present as angina (chest pain), myocardial infarction (heart attack), or other problems.

According to WHO, ischaemic heart disease is the world’s biggest killer, responsible for 13% of the total deaths. Therefore, it is crucial to prescribe appropriate treatment to minimise the risks of complications and recurrences. Researchers at HSE University developed a model capable of predicting the probability of major adverse cardiac events following a myocardial infarction. 

The scientists analysed data from patients admitted with myocardial infarction to the Surgut District Centre for Diagnostics and Cardiovascular Surgery between 2015 and 2024. Upon admission to the emergency department, medical researchers (cardiologists) explained the main points of the study protocol to the patients and obtained their informed consent to participate. The cardiologists then assessed the condition of the coronary arteries supplying the heart and based on their evaluation, either balloon angioplasty with stenting or coronary artery bypass grafting were performed. All patients received guideline-based therapy, including RAAS-blockers, beta-blockers, statins, and dual antiplatelet therapy. The information was documented in the patients' hospital medical records. For each patient, standard clinical measurements were taken, including blood pressure, body mass index, and cholesterol and glucose levels.

During the laboratory stage, DNA was isolated from the leukocyte rings in the collected blood samples and then frozen at −80°C for future genetic testing. The genotypes were determined based on a specific genetic variation (polymorphism) in the VEGFR-2 gene. The genetic marker VEGFR-2 is a component of the body's signalling system that regulates the growth of new blood vessels. There are three variations of the genotype—C/C, C/T, and T/T—differing in the variation of the DNA nucleotides cytosine (C) or thymine (T) in this region of the gene. Although the marker has been known for a long time, this was the first study to examine its impact on the prognosis of complications following myocardial infarction.

The authors evaluated the impact of 39 factors on the prognosis of risks such as cardiac death, recurrent acute coronary syndrome, stroke, and the need for repeat revascularisation, a procedure that helps restore blood flow in the arteries. To select the best model, the researchers trained and tested several machine learning algorithms: Gradient Boosting (CatBoost and LightGBM), Random Forest, Logistic Regression, and an AutoML approach.

The CatBoost model, a gradient boosting algorithm optimised for working with categorical data rather than numeric values, demonstrated the best performance. It makes predictions by sequentially building and training 'weak' decision trees, where each new tree corrects the errors of the previous ones. When building trees, the algorithm splits the data into two parts: the model is trained on one portion, while errors are calculated on the other. This reduces the risk of overfitting, where the model simply memorises the correct answers, and helps it identify general patterns for making predictions in new, unseen cases.

The influence of features on the model's accuracy was evaluated using the method of sequential feature addition, which assesses their contribution at each stage. The researchers selected the 9 most significant features: gender, body mass index, Charlson comorbidity index (which accounts for the presence of serious concomitant diseases), condition of the lateral wall of the left ventricle, degree of damage to the left coronary artery trunk, number of affected arteries, variant of the VEGFR-2 gene, choice between percutaneous coronary intervention or coronary artery bypass grafting, and statin dosage.

The results showed that the dose of statins, medications used to lower cholesterol levels in the blood, is the most important factor influencing the risk of complications. High doses of statins reduce this risk, particularly in patients with an unfavourable genotype. The VEGFR-2 polymorphism, specifically the presence of the T allele, was ranked fourth in terms of importance.

'Previously, genetic factors were not included in ML models, primarily because sequencing or even genotyping of individual nucleotides is not routinely performed in hospitals. In addition to standard measurements, we had access to data on polymorphism in the VEGFR-2 gene. This allowed us to compare this indicator with others and determine that the risk allele of the VEGFR-2 variant is one of the five most important factors for predicting long-term outcomes in patients with myocardial infarction,' explains Maria Poptsova, Head of the HSE International Laboratory of Bioinformatics and co-author of the paper.

The researchers emphasise that analysing genetic data contributes to creating more accurate and personalised models for predicting the risk of major adverse cardiovascular events in patients following a myocardial infarction.

'Cardiovascular diseases require resources for diagnosis, treatment, rehabilitation, and prevention, and therefore place a significant burden on the healthcare system. The introduction of such models into clinical practice could reduce mortality and the frequency of recurrent infarctions, optimise treatment, and ease the burden on healthcare professionals,' according to Alexander Kirdeev, Research Assistant at the International Laboratory of Bioinformatics and lead author of the paper.

The study was carried out in the framework of HSE University's 'Mirror Laboratories' project.

See also:

Using Two Cryptocurrencies Enhances Volatility Forecasting

Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.

Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions

An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.

Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence

Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.

Solvent Instead of Toxic Reagents: Chemists Develop Environmentally Friendly Method for Synthesising Aniline Derivatives

An international team of researchers, including chemists from HSE University and the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), has developed a new method for synthesising aniline derivatives—compounds widely used in the production of medicines, dyes, and electronic materials. Instead of relying on toxic and expensive reagents, they proposed using tetrahydrofuran, which can be derived from renewable raw materials. The reaction was carried out in the presence of readily available cobalt salts and syngas. This approach reduces hazardous waste and simplifies the production process, making it more environmentally friendly. The study has been published in ChemSusChem.

Quantity over Quality: How Publication Activity Leads to Crisis

Participants of the 4th Fall into ML conference at HSE University held a discussion titled ‘Academia in Crisis: What Does the Future Hold?’ In particular, they examined why the number of scientific publications continues to grow, what the quality of these papers is, what expectations should be placed on researchers, and what role artificial intelligence plays in preparing academic articles.

How Colour Affects Pricing: Why Art Collectors Pay More for Blue

Economists from HSE University, St Petersburg State University, and the University of Florida have found which colours in abstract paintings increase their market value. An analysis of thousands of canvases sold at auctions revealed that buyers place a higher value on blue and favour bright, saturated palettes, while showing less appreciation for traditional colour schemes. The article has been published in Information Systems Frontiers.

New Method for Describing Graphene Simplifies Analysis of Nanomaterials

An international team, including scientists from HSE University, has proposed a new mathematical method to analyse the structure of graphene. The scientists demonstrated that the characteristics of a graphene lattice can be represented using a three-step random walk model of a particle. This approach allows the lattice to be described more quickly and without cumbersome calculations. The study has been published in Journal of Physics A: Mathematical and Theoretical.

Scientists Have Modelled Supercapacitor Operation at Molecular and Ionic Level

HSE scientists used supercomputer simulations to study the behaviour of ions and water molecules inside the nanopores of a supercapacitor. The results showed that even a very small amount of water alters the charge distribution inside the nanopores and influences the device’s energy storage capacity. This approach makes it possible to predict how supercapacitors behave under different electrolyte compositions and humidity conditions. The paper has been published in  Electrochimica Acta.  The study was supported by a grant from the Russian Science Foundation (RSF).

Designing an Accurate Reading Skills Test: Why Parallel Texts are Important in Dyslexia Diagnosis

Researchers from the HSE Centre for Language and Brain have developed a tool for accurately assessing reading skills in adults with reading impairments. It can be used, for instance, before and after sessions with a language therapist. The tool includes two texts that differ in content but are equal in complexity: participants were observed to read them at the same speed, make a similar number of errors, and understand the content to the same degree. Such parallel texts will enable more accurate diagnosis of dyslexia and better monitoring of the effectiveness of interventions aimed at addressing it. The paper has been published in Educational Studies.

Internal Clock: How Heart Rate and Emotions Shape Our Perception of Time

Our perception of time depends on heart rate—this is the conclusion reached by neuroscientists at HSE University. In their experiment, volunteers watched short videos designed to evoke specific emotions and estimated each video's duration, while researchers recorded their heart activity using ECG. The study found that the slower a participant's heart rate, the shorter they perceived the video to be—especially when watching unpleasant content. The study has been published in Frontiers in Psychology.