• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Искусственный интеллект предсказал поведение квантовых систем

Искусственный интеллект предсказал поведение квантовых систем

© iStock

Ученые ВШЭ совместно с коллегами из Университета Южной Калифорнии разработали алгоритм, который быстро и точно предсказывает поведение квантовых систем — от квантовых компьютеров до солнечных батарей. С его помощью удалось смоделировать процессы в полупроводнике MoS₂ и выяснить, что на движение заряженных частиц влияет не только количество дефектов, но и их расположение. Эти дефекты могут замедлять или ускорять перенос заряда, создавая эффекты, которые раньше было сложно учесть при применении стандартных методов. Исследование опубликовано в журнале The Proceedings of the National Academy of Sciences (PNAS).

Современная электроника работает благодаря квантовым эффектам. Полупроводники, светодиоды, солнечные батареи — все эти устройства зависят от того, как ведут себя электроны в материалах. Описать такие процессы с высокой точностью сложно: моделирование требует огромных вычислительных мощностей. Чтобы рассчитать движение электронов в материале из тысячи атомов, суперкомпьютерам приходится выполнять миллионы операций. 

Обычно при моделировании квантовых систем используют метод молекулярной динамики: он позволяет предсказывать, как атомы и электроны будут двигаться со временем. Однако если состояния электронов изменяются быстро, стандартные методы моделирования становятся слишком ресурсоемкими.

Исследователи МИЭМ ВШЭ решили проблему с помощью использования машинного обучения. Новый алгоритм анализирует небольшие фрагменты материала, обучаясь на их локальных свойствах, а затем строит предсказания о поведении всей системы. Ученые изучили двумерный полупроводник сульфид молибдена (MoS₂) — перспективный материал для оптоэлектроники и фотовольтаики. В частности, он может служить рабочим слоем солнечных элементов. В идеальном случае атомы молибдена (Mo) и серы (S) образуют упорядоченную решетку, но в реальных материалах структура редко бывает идеальной: в ней могут присутствовать дефекты. Дефекты — это нарушения в расположении атомов. В MoS₂ они могут проявляться как вакансии (отсутствие атомов серы или молибдена), лишние атомы между слоями, локальные смещения или другие отклонения от идеальной решетки. Дефекты меняют поведение электронов: в некоторых случаях ухудшают проводимость, но иногда могут придавать материалу новые свойства, например увеличивать его чувствительность к свету или делать его лучшим проводником заряда.

Лю Дунюй

«Чтобы понять, как дефекты влияют на движение электронов, мы сосредоточились на небольших фрагментах материала. Алгоритм сначала изучал локальные свойства системы, а затем предсказывал поведение всей структуры. Это как при изучении языка: сначала ты запоминаешь отдельные слова, а потом начинаешь понимать целые предложения», — комментирует доцент МИЭМ ВШЭ Лю Дунюй.

Оказалось, что важно не только количество дефектов, но и их расположение. Дефекты могут задерживать или ускорять движение заряженных частиц, создавая ловушки для носителей заряда внутри запрещенной зоны полупроводника. Стандартные методы плохо справляются с расчетом этих эффектов, так как при расчетах необходимо учитывать взаимодействие дефектов друг с другом и с атомами материала, что сложно сделать при использовании вычислительных ячеек малого размера. Машинное обучение позволяет преодолеть эти размерные ограничения и учесть синергетический эффект множественных дефектов в материале.

Андрей Васенко

«Важно, что этот метод не только ускоряет вычисления, но и помогает изучать реальные квантовые системы, — комментирует профессор МИЭМ НИУ ВШЭ Андрей Васенко. — Результаты наших исследований смогут сократить разрыв между теоретическим моделированием и экспериментальными исследованиями материалов.  Мы разработали новый подход к изучению движения зарядов в сложных системах, объединив точные вычисления, молекулярную динамику и машинное обучение. Этот метод поможет исследовать материалы, в которых электроны переносят энергию и информацию, что важно для электроники и энергетики».

Вам также может быть интересно:

Стартовала регистрация школьников на Всероссийскую олимпиаду по ИИ

Открылась регистрация на пятый сезон Всероссийской олимпиады по искусственному интеллекту. В этом году организаторы ожидают увеличения числа участников — соревнование получило международный статус, и теперь принять участие могут школьники 8–11-х классов не только из России, но и из других стран. Олимпиаде присвоен II уровень в перечне РСОШ — ее призеры и победители получат льготы при поступлении в вуз.

В НИУ ВШЭ обсудили глобальные тренды ИИ на международной форсайт-сессии

В Высшей школе экономики прошла международная форсайт-сессия по искусственному интеллекту (ИИ). Российские и иностранные ученые обсудили тренды и вызовы, которые возникают в связи с быстрым развитием ИИ.

Больше не одинокий гений: как сохранить идентичность ученого в эпоху ИИ

Сегодня профессия ученого требует новых навыков, зачастую не связанных с наукой — от умения находить гранты до успешной продажи продукта своего труда. Огромным вызовом стал ИИ, который справляется со многими задачами быстрее человека. Центр научной интеграции НИУ ВШЭ организовал вебинар «Ученые и искусственный интеллект», посвященный профессиональной идентичности исследователя в условиях стремительной цифровизации и технологических трансформаций. Подробнее — в материале HSE Daily.

Вышка доверит ИИ рутинную работу по созданию программ ДПО

НИУ ВШЭ совместно с EdTech-компанией CDO Global запускает AI-конструкторы для оптимизации разработки курсов дополнительного профессионального образования (ДПО). Новый сервис позволит автоматизировать подготовку учебных материалов и оценочных средств, значительно сократив время и ресурсы, затрачиваемые преподавателями и методистами.

ВШЭ и Московский аналитический центр объединят усилия в сфере ИИ

НИУ ВШЭ подписал соглашение о сотрудничестве с ГБУ «Московский аналитический центр». Документ закрепил намерение сторон развивать совместные исследования и внедрять технологии искусственного интеллекта в управление городским хозяйством.

Руководители «Билайна» прокачивают навыки работы с ИИ на базе НИУ ВШЭ

В Центре непрерывного образования факультета компьютерных наук НИУ ВШЭ стартовала программа повышения квалификации для руководителей компании «Вымпелком» «Лаборатория ИИ: Вместе быстрее». В ее работе примут участие сотрудники компании из разных городов страны, которые будут повышать компетенции по внедрению ИИ в бизнес-процессы.

Вузы разделились на шесть лагерей в отношении к искусственному интеллекту

Каким должно быть образование в эпоху ИИ? Чтобы разобраться, какие есть точки зрения и какие решения уже формируются, команда Института образования ВШЭ весной 2025 года провела серию интервью с проректорами российских университетов. Об итогах этого исследования рассказывает директор института Евгений Терентьев.

НИУ ВШЭ стал абсолютным лидером рейтинга вузов по подготовке кадров для ИИ

Альянс в сфере искусственного интеллекта опубликовал обновленный рейтинг вузов по качеству подготовки специалистов в области ИИ. В него вошли 203 российских университета из 68 регионов. Высшая школа экономики первой получила наивысшую категорию А++.

ВШЭ и МТС будут вместе бороться с дипфейками и научат искусственный интеллект создавать новое видео под запросы пользователей

НИУ ВШЭ и компания МТС Web Services (MWS) объявили о запуске серии совместных исследовательских работ в области технологий искусственного интеллекта, направленных на развитие инновационных решений в сфере кибербезопасности, мультимодальной генерации контента и анализа больших данных. Основным исполнителем проекта является Московский институт электроники и математики им. А.Н. Тихонова НИУ ВШЭ при общей координации Центра искусственного интеллекта ВШЭ.

11 вузов России стали участниками проекта ВШЭ и «Яндекса» по применению ИИ при подготовке дипломных работ

Эксперты «Яндекс Образования» и факультета компьютерных наук НИУ ВШЭ научили студентов и научных руководителей использовать нейросеть YandexGPT в трудоемких задачах — для анализа источников, структурирования информации, визуализации данных и работы с текстом в процессе подготовки дипломов.